个人主页: https://wuyinjun-1993.github.io/
主要研究方向
机器学习中的数据管理问题,人工智能与数据库系统的融合,人工智能中的可解释性问题
博士研究论文“Towards the Efficient Use of Fine-Grained Provenance in Data Science Applications”获得宾夕法尼亚大学计算机系最佳博士论文奖。
在国际计算机会议和期刊上发表20余篇论文,包括:
数据库顶级会议SIGMOD (CCF-A, 2篇),VLDB (CCF-A, 3篇),系统顶级会议OOPSLA(CCF-A,1篇),人工智能顶级会议ICML(CCF-A, 2篇),AAAI(CCF-A,2篇)
主要学术任职
在多个CCF-A类期刊和会议上担任审稿人,包括:
ACM SIGMOD (CCF-A)
VLDB Journal (CCF-A)
ICDE (CCF-A)
Neurips (CCF-A)
AAAI (CCF-A)
EDBT (CCF-B)
Selected Publications
TorchQL: A Programming Framework for Integrity Constraints in Machine Learning (OOPSLA 2024)
Do Machine Learning Models Learn Statistical Rules Inferred from Data? (ICML 2023)
Learning to Select Pivotal samples for Meta Re-weighting (AAAI 2023)
Chef: a cheap and fast pipeline for iteratively cleaning label uncertainties (VLDB 2021)
Dynamic Gaussian Mixture based Deep Generative Model For Robust Forecasting on Sparse Multivariate Time Series (AAAI 2021)
Deltagrad: Rapid retraining of machine learning models (ICML 2020)
PrIU: A provenance-based approach for incrementally updating regression models (SIGMOD 2020)
ProvCite: A Provenance-based Citation System (VLDB 2019)
Data Citation: Giving Credit where Credit is Due (SIGMOD 2018)
Automating data citation in CiteDB (VLDB 2017)